/** *

* This example demonstrates the construction of the Sierpinski triangle using * Michael Barnsley's Chaos Game method. This method relies on picking a random * start point inside a triangle, which in this case here is done using * barycentric coordinates to ensure the point is indeed inside, guaranteed. *

* *

Further information: * http://en.wikipedia.org/wiki/Sierpinski_triangle * http://en.wikipedia.org/wiki/Chaos_game * http://en.wikipedia.org/wiki/Barycentric_coordinate_system_(mathematics) *

* *

Usage:

*/ /* * Copyright (c) 2010 Karsten Schmidt * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * http://creativecommons.org/licenses/LGPL/2.1/ * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ import toxi.geom.*; import toxi.math.*; Line2D l = new Line2D(new Vec2D(), new Vec2D()); Vec2D[] verts; Vec2D p; void setup() { size(680, 382, P3D); background(255); initTri(); } void draw() { for (int i = 0; i < 1000; i++) { l.set(verts[MathUtils.random(3)], p); p = l.getMidPoint(); point(p.x, p.y); } } void initTri() { Vec2D o = new Vec2D(width / 2, height / 2); Vec2D a = Vec2D.randomVector().scale(random(width / 2)).add(o); Vec2D b = Vec2D.randomVector().scale(random(width / 2)).add(o); Vec2D c = Vec2D.randomVector().scale(random(width / 2)).add(o); verts = new Vec2D[] { a, b, c }; Triangle2D tri = new Triangle2D(a, b, c); // pick random barycentric point float r1 = random(1); float r2 = random(1 - r1); float r3 = 1 - (r2 + r1); // get actual point in cartesian space (will be inside triangle) p = tri.fromBarycentric(new Vec3D(r1, r2, r3)); } void mousePressed() { initTri(); background(255); }