/**
*
SphericalHarmonicsMeshBuilder demonstrates how to use the SurfaceMeshBuilder class
* in conjunction with a spherical harmonics function to dynamically create a variety
* of organic looking forms. The function is described in detail on Paul Bourke's website.
* Included is also a re-usable function for displaying a generic TriangleMesh instance
* using normal mapping. the display of surface normals useful for debug purposes.
*
* Usage:
*
* - r: randomize spherical harmonics
* - w: toggle wireframe on/off
* - n: toggle normal vector display on/off
* - s: save current mesh as STL file
* - space: save screenshot
*
*/
/*
* Copyright (c) 2010 Karsten Schmidt
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* http://creativecommons.org/licenses/LGPL/2.1/
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
import processing.opengl.*;
import toxi.math.waves.*;
import toxi.geom.*;
import toxi.geom.mesh.*;
TriangleMesh mesh = new TriangleMesh();
boolean isWireFrame;
boolean showNormals;
boolean doSave;
Matrix4x4 normalMap = new Matrix4x4().translateSelf(128,128,128).scaleSelf(127);
void setup() {
size(1024,576, OPENGL);
randomizeMesh();
}
void draw() {
background(0);
translate(width / 2, height / 2, 0);
rotateX(mouseY * 0.01f);
rotateY(mouseX * 0.01f);
lights();
shininess(16);
directionalLight(255,255,255,0,-1,1);
specular(255);
drawAxes(400);
if (isWireFrame) {
noFill();
stroke(255);
}
else {
fill(255);
noStroke();
}
drawMesh(g, mesh, !isWireFrame, showNormals);
if (doSave) {
saveFrame("sh-"+(System.currentTimeMillis()/1000)+".png");
doSave=false;
}
}
void drawAxes(float l) {
stroke(255, 0, 0);
line(0, 0, 0, l, 0, 0);
stroke(0, 255, 0);
line(0, 0, 0, 0, l, 0);
stroke(0, 0, 255);
line(0, 0, 0, 0, 0, l);
}
void drawMesh(PGraphics gfx, TriangleMesh mesh, boolean vertexNormals, boolean showNormals) {
gfx.beginShape(PConstants.TRIANGLES);
AABB bounds=mesh.getBoundingBox();
Vec3D min=bounds.getMin();
Vec3D max=bounds.getMax();
if (vertexNormals) {
for (Iterator i=mesh.faces.iterator(); i.hasNext();) {
Face f=(Face)i.next();
Vec3D n = normalMap.applyTo(f.a.normal);
gfx.fill(n.x, n.y, n.z);
gfx.normal(f.a.normal.x, f.a.normal.y, f.a.normal.z);
gfx.vertex(f.a.x, f.a.y, f.a.z);
n = normalMap.applyTo(f.b.normal);
gfx.fill(n.x, n.y, n.z);
gfx.normal(f.b.normal.x, f.b.normal.y, f.b.normal.z);
gfx.vertex(f.b.x, f.b.y, f.b.z);
n = normalMap.applyTo(f.c.normal);
gfx.fill(n.x, n.y, n.z);
gfx.normal(f.c.normal.x, f.c.normal.y, f.c.normal.z);
gfx.vertex(f.c.x, f.c.y, f.c.z);
}
}
else {
for (Iterator i=mesh.faces.iterator(); i.hasNext();) {
Face f=(Face)i.next();
gfx.normal(f.normal.x, f.normal.y, f.normal.z);
gfx.vertex(f.a.x, f.a.y, f.a.z);
gfx.vertex(f.b.x, f.b.y, f.b.z);
gfx.vertex(f.c.x, f.c.y, f.c.z);
}
}
gfx.endShape();
if (showNormals) {
if (vertexNormals) {
for (Iterator i=mesh.vertices.values().iterator(); i.hasNext();) {
Vertex v=(Vertex)i.next();
Vec3D w = v.add(v.normal.scale(10));
Vec3D n = v.normal.scale(127);
gfx.stroke(n.x + 128, n.y + 128, n.z + 128);
gfx.line(v.x, v.y, v.z, w.x, w.y, w.z);
}
}
else {
for (Iterator i=mesh.faces.iterator(); i.hasNext();) {
Face f=(Face)i.next();
Vec3D c = f.a.add(f.b).addSelf(f.c).scaleSelf(1f / 3);
Vec3D d = c.add(f.normal.scale(20));
Vec3D n = f.normal.scale(127);
gfx.stroke(n.x + 128, n.y + 128, n.z + 128);
gfx.line(c.x, c.y, c.z, d.x, d.y, d.z);
}
}
}
}
void keyPressed() {
if (key == 'r') {
randomizeMesh();
}
if (key == 'w') {
isWireFrame = !isWireFrame;
}
if (key == 'n') {
showNormals = !showNormals;
}
if (key == 's') {
mesh.saveAsSTL(sketchPath("superellipsoid-"+(System.currentTimeMillis()/1000)+".stl"));
}
if (key == ' ') {
doSave=true;
}
}
void randomizeMesh() {
float[] m=new float[8];
for(int i=0; i<8; i++) {
m[i]=(int)random(9);
}
SurfaceMeshBuilder b = new SurfaceMeshBuilder(new SphericalHarmonics(m));
mesh = (TriangleMesh)b.createMesh(null,80, 60);
}